Classification of fake news article titles using character-level
convolutional neural networks

Andrew Benecchi

2021-12-17

Abstract

Automated detection of spurious news and spam often rely on abstracting lexical, morphological,
syntactical, or affective content from text. These models have merit in corresponding with human-
observer features, but information is lost, and the features may not follow normal distributions, especially
in short excerpts of text such as titles. Existing often rely on inclusion of the body text, which may or may
not exist in real-world applications; since these article titles are accessible in metadata across platforms,
classification of headlines has a much broader use case. We propose a method of applying character-
level convolutional neural networks, a character-agnostic feature recognition system that combines the
sentence-as-time-series philosophy of word2vec with a less constrained view of what information may be
useful to classification, while vastly minimizing preprocessing time.

Introduction

Fake news has become pervasive within the public consciousness since the mass inter-generational adoption of
multi-platform social networks such as Facebook, Twitter, and YouTube. The decentralized nature of social
networks engenders the formation of echo chambers in online spaces, and growing distrust in government
and mass media have not led to healthier skepticism towards all media but instead a growing trend for
people to reject information that runs counter to their narrative as “fake news” while uncritically lending
credibility to spurious information. Fake news may not be 100% false, but the term applies to information
reported wherein a seed of truth is abstracted heavily or combined with “alternative facts” to bend and
obscure the truth to fit a narrative. This rise in the transmissibility of fake news has led to the proliferation
in disinformation—misinformation deliberately spread to have financial, social or political influence. In
comparison to disinformation and misinformation spread through legacy media, which was largely spread
by local and national state actors within or across borders, disinformation spread through social networks
may have a variety of authors, from domestic and foreign governments, extremist groups, and politicians,
to business figures and local or international profiteers—those who earn money from disinformation through
advertising revenue, related product sales, or capital gains from favorable movements in the prices of financial
instruments. In order to limit the spread of fake news, social media sites have introduced various methods
of detection, from screening out websites known for misinformation, to text detection within articles and/or
metadata, to advanced methods such as text detection using optical character recognition within images.
These attempts are not without their flaws, however, as over-sensitivity to specific keywords, patterns, and
phrases may exist.

Previous published methods of text classification of fake news articles, titles, and opinion-related spam in
general include analysis of lexical, psychological, grammatical, syntactical, and morphological features, or
analysis of the relative frequency or salience of words or their stemmed forms. We propose a method of spam
classification that relies not on abstracted features or content but instead a language-agnostic method that
takes the individual characters as input. Though applying character-based text classification is a relatively-
trivial extension of the application of convolutional neural networks to categorically-structured data, it is
only now become more accessible due to recent advancements in both software development and hardware
being able to handle the time and memory complexity.

News Size Subjects

(Number of articles)

Type Articles
Real-News 21417
size
World-News
10145
Politics-
News 11272
Type Articles
Fake-News 23481
size
Government- 1570
News
Middle-east 778
US News 783
lefi-news 4459
politics 6841
News 9050

Figure 1: Breakdown of topics.

Exploratory Data Analysis

The data come from the Kaggle Fake vs. Real News dataset from Ahmed, Traore, and Saad (2017) and
"Ahmed et al. (2018), which contains fake and real headlines, article bodies, topics, and dates in two class-
separated csv files, with 23481 fake articles, with y = 1 for label, and 21417 real articles with y = 0 for label.
All of the real articles come from Reuters, while the fake articles come from a Kaggle collection assembled
from articles flagged by Politifact and Wikipedia. Because the data from the fake news sites have a more
diverse underlying source than the real news, it is possible that there are reader-salient elements within
the genuine article bodies that may ‘tip off’ the classifier as to what class to which the article belongs; for
example “CITY, Country (Reuters) -” is the header of most Reuters body paragraphs, and “2INEWSWIRE”
is in several of the fake news paragraphs.

Histogram of Lengths of Real vs. Fake Title Length Histogram of Lengths of Real vs. Fake Article Body Length
3
Fake 10 Fake
100 e real e real
10°
17
10
10
1o° | 1o° il 1
0 50 100 150 200 250 300 350 0 10000 20000 30000 40000 50000 60000

Figure 2: Histograms of real and fake titles and article texts

The real titles have more variability in length, while the distribution of fake news article body texts has
a strong rightward skew. Few real article titles are shorter than 30 characters or exceed 100 characters in
length, so that indicates that there may be appr/opriate boundaries within that range, so tests should be
carried out with reduced data.

https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset

Literature Review

The problem of detecting fake news has a strong corollary with other types of spam detection, such as online
review spam detection. Jindal and Liu (2008) divided Amazon spam comments into three classes: bogus
reviews—spam intended to praise/defame the product in order to raise/lower its status within the store; re-
views on brands, where the text praises/defames the brand/company behind the product with no information
regarding product-specific experience; finally, non-reviews, including advertisements, questions/answers, and
random texts (i.e. the comment has no sentiment, real or fake). Classification was performed using logistic
regression for each task. A first-pass screening of duplicate comments can be eliminating comments with a
certain level of similarity; in the case of text data, one can use the Jaccard similarity, which takes the set of

unique words(d;)Nunique words(d;) . s
unique words(d;)Uunique words(d;) * In their analySIS of these

reviews, they found that 90% of reviewers on a subset of products had a maximum comment Jaccard simi-
larity (vs. any reviewer) of 0.1, with the fewest having a Jaccard similarity of around 0.5, with the number
slowly increasing up to a maximum score of 1, with 6% of reviewers having a maximum Jaccard score of
1. Users may either be spam accounts or genuine accounts accidentally sending duplicate reviews. In the
context of fake news headlines, Jaccard similarity can be used as a distance metric in a k-nearest neighbors
classifier, though this simple implementation may have bias towards classifying certain news topics or sources
with certain styles (e.g. tabloids) as fake news. Brand reviews and non-reviews are the easier classification
problems, as bogus reviews have a level of verisimilitude. The features used for classifying the former two
types of spam include review-centric features, reviewer features, and product features, with textual features
being particularly of interest. Frequency of positive and negative words in reviews, and frequency of brand
name mentions, numbers, capital letters, and all-capital words were examined. Additionally, cosine similar-

ity between reviews and product features was specifically helpful in detecting advertisements, with cosine

similarity Scos(ds,d;) = m, with d; being an 1 X n,n = # unique words in dataset feature vector

all words in comments d;, d; and calculates J; ; =

with each entry being the count of a unique word; since large values of S.os indicate high degrees of similarity
in overlap of vocabulary, 1 — Scos(d;, d;) can be also used as a distance metric for classification tasks. An
L; version using Manhattan distance or L, using p-dimensional Minkowski distance can be formulated by
replacing the Lo distance metric with the L,-norm. For classification of bogus reviews, the task involved
looking at reviewer history to examine biases in reviews of similar products using outliers: positive reviews
on poorly-reviewed products, negative reviews on well-reviewed products, and polarized reviews on products
with average ratings. Jindal and Liu (2008) applied uplift modeling, a technique often found in marketing
contexts, to assess likelihood of classification as spam based on four different types of reviewers: positive and
negative reviewers (those +10) in terms of sentiment, and positive and negative same-brand reviewers. Up-
lift per decile was implemented to compare the likelihood of positive spam classification to these four classes
compared to random chance. A summary of uplift modeling and uplift per decile can be found in Gutierrez
and Gérardy (2017), though the methods in this paper does not have random assignment of treatments so
causality is not relevant. Reviewers who repeatedly gave negative reviews for the same brand were most
likely across all deciles to be classified as spam, whereas those with positive reviews generally were less likely
than random to be classified as spam.

Horne and Adali (2017) proposed a method of classification using features based on complexity, style, and
intended psychological effect by using various NLP toolkits for Python, and applied an ANOVA to explore
their datasets. Real news article titles are more likely on average to contain fewer proper nouns than fake
or satire news article titles, while real news article bodies were more likely to contain positive words and
less likely to contain negative words than fake news articles. Their Linear SVM was applied to a dataset
of 75 real articles, 75 fake news articles, and 75 satire articles, with performance assessed on the mean of
5-fold cross-validation of one-versus-one classification tasks. The SVM performed best on distinguishing
satire article bodies from real article bodies, and performed worst on distinguishing satire article titles from
fake news article titles.

One common method of dimensionality reduction of text datasets is the term-frequency inverse-document-
frequency (¢fidf(D,d,t) = tf(t,d) x idf(t,D)) where D is the set of all data, d € D, and t are the set of
terms within all documents D. The term frequency within a document can be described by the raw count

divided by the total number of terms in the document ¢f(t,d) = Z%, or through alternative measures

t'ed ft’,d

of tf(t,d) such as the raw count, binary, or through a normalization method such as log normalization
tf(t,d) =log(1+ fi.q4) or through double normalization with strength K, ¢f(¢,d) = K+ (1 - K) Ft.d

maxyreqy fora’
Inverse document frequency idf (¢, D) is a measure that increases with the rarity of a term, and is classically

measured by idf(t,D) = log% where |D| is the number of documents and |d € D : t € d] is the

number of documents where ¢ can be found. Alternatives includes the smooth IDF 1+ log % which
reduces the deweighting of common document-wide terms (e.g. ‘for,” ‘the,” ‘and’) and the probabilistic IDF

log %%Defl‘edl which further deweights the most common document-wide terms. TFIDF is implemented

in feature extraction tasks for "Ahmed et al. (2018) and Ahmed, Traore, and Saad (2017).

Ahmed, Traore, and Saad (2017) preprocessed the data by removing unnecessary characters, tokenizing
the resulting words, removing stop words—common words such as pronouns, prepositions, and infinitives,
and stemming—reducing conjugated forms e.g. '{run, runner, running, drink, drinker, drinking}
— '{run, run, run, drink, drink, drink}. From these, n-grams (word sequences of length n) were
extracted, and the top k& n-grams were selected for each sample. For the top 50,000 cleaned n = 1-grams
(i.e. single words), the accuracy of the linear SVM was 92.0%.

g
o
H
E
3
o

~1

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

Figure 3: Character-level convolution

Zhang, Zhao, and LeCun (2016) proposed a character-level method of classification of text using 1-
dimensional convolutional neural networks, allowing for flexibility with and generalization to problems with
different character sets (e.g. Greek alphabet, Hangul, Emoji). The proposed method works by assigning
each character (including padding and unknown characters as specific entities) as unique integer IDs which
are converted to one-hot vectors within the character embedding space. Each sample is now represented by
a 2D array which can be thought of as a time series of one-hot vectors. From this point, the embdedded data
is convolved using several filters and max-pooled several times before flattening to a series of fully-connected
layers with dropout before the final output layer, which has 1 node in binary classification and regression
problems and k nodes in a k-way classification problem.

The example model structure is offered in small or large configurations in the example. Within the convo-
lutional stage, it uses 6 rounds of ReLu-activated 1-D convolution with feature sizes of either 256 (small)
or 1024 (large); the first two 1-D convolutional layers have a filter size of 7 and are both followed by a
max-pooling layer with a pooling number of 3. After this second max-pooling layer, the data passes through
the 3 ReLu-activated 1-D convolutional layers with filter size of 3 before the final 1-D convolutional layer,
which also has a filter size of 3 and is followed by another max-pooling layer with a pooling number of 3.
This feature array is flattened as it gets passed to the two dropout-regulated fully-connected layers, which
are either of size 1024 (small) or 2048 (large); the dropout probability for their experiments was set to
Pdropout = 0.5. In order to control for generalization error through data augmentation, on some experiments
using the character-level CNN the authors implemented a weighted thesaurus method, where new samples
are copied from existing samples, and the sentences are scanned for replaceable words (i.e. words with a syn-
onym); the probability that n words are replaced in a given sample follows a geometric distribution where
Pn=2z)=1-pp*,z € Z>0,p € (0,1); when it is decided that a word is replaced, it is replaced with
a synonym with index s in the similarity-sorted list which also follows a geometric distribution, with the
probability of choosing index s is P(s =y) = (1 — q)q¥,y € Z > 0,q € (0,1). This method is unfortunately

agnostic to whether or not the replaced word(s) are load-bearing (i.e. their replacement by synonym(s) com-
pletely changes the meaning of a sentence). The authors set p = ¢ = 0.5 for their analysis, though this
provides an hyperparameter that can be further inspected. With the dataset from Ahmed, Traore, and Saad
(2017) the concern of augmentation using the thesaurus method is that its random assignment of replace-
ment words may directly affect the classification task because unusual patterns of speech are often found in
spam, whereas this augmentation may be better fit for tasks such as sentiment analysis or topic/ontological
classification. The character-level CNN was compared to to classical NLP methods such as bag-of-words and
its TFIDF, bag-of-n-grams and its TFIDF, and bag-of-means on word embedding, as well as deep learning
methods such as a long-short term memory (LSTM) network and word-based convolutional networks using
word2vec or a lookup table.

Dataset Classes Train Samples Test Samples Epoch Size
AG’s News 4 120,000 7.600 5,000
Sogou News 5 450,000 60,000 5,000
DBPedia 14 560,000 70,000 5,000
Yelp Review Polarity 2 560,000 38,000 5,000
Yelp Review Full 5 650,000 50,000 5,000
Yahoo! Answers 10 1,400,000 60,000 10,000
Amazon Review Full 5 3,000,000 650,000 30,000
Amazon Review Polarity 2 3,600,000 400,000 30,000

Figure 4: Comparison of classification tasks in Zhang, Zhao, and LeCun (2016). Epoch size is measured by
dividing training size by batch size.

The authors’ models performed the best in tasks with large sample sizes (i.e. the latter four entries in [4]),
with n-gram methods performing best for the tasks smaller datasets, indicating its quality for implementation
in large datasets and potential commercial applications. From their results, the authors learned that the
semantics of the task do not affect the classification capability of character-level CNN and that considering
uppercase characters to be separate from their lowercase counterparts was not helpful for larger datasets; in
environments and learning tasks where capitalization conveys less meaning, distinguishing between the two
is likely to be not as important. In the case of fake news detection, it is possible that fake news headlines or
body texts use nonstandard capitalization (e.g. Phrases In Title Case, PHRASES IN ALL CAPS) and thus
whether uppercase letters should be retained in the embedding ought to be tested as part of this paper’s
methodology.

Methodology

Computer Information

Experiments were performed on Ubuntu 20.04 running on Windows Subsystem for Linux on an 8-core, 16-
thread AMD Ryzen 3700X and NVIDIA RTX 2070 SUPER, with 32GB maximum virtual memory usage.
The memory limit was quickly reached with analysis of full article content, so future experimentation on a
virtual machine or on upgraded hardware should be carried out to extend upon the methods in this paper.

Software

Python 3.7

Linear Algebra and Data: NumPy, pandas

Neural Network Architecture: Tensorflow, keras backend
Statistics, Classification, and Evaluation: scikit-learn

Other Packages: re, time

Preprocessing

For experiments where the input length was constrained, all titles of at least 30 and no more than 96
characters in length were retained, while all others were discarded. All experiments had data that were
balanced by finding the greatest multiple of 100 less than or equal to the size of either class, and capping
the number of samples per class to that number. From there, the quotation marks are cleaned to standard
nondirectional single and double quotes, and each character is assigned an ID such that every non-whitespace
character is assigned an ID, with unknown characters being assigned UNK; since the length of this ID table
depends on the character set used, uppercase and lowercase characters are not assigned uniform IDs. These
strings of IDs are padded with O characters to achieve a uniform length so that the model may take the
information as input.

Table 1:

Comparative table of models tested.
M=MP=Max Pooling, FC=D=Fully Connected

L=lowercase, U=Uppercase, C=C1D=Convolution,

Samples | Case | Input | Layer.Order C1D.Filters | Kernel.Size | MP.Factor | FC.Size | Params
42800 | L 339 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 1024 | 4786143
42800 | U 339 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 1024 | 4837025
42800 | L 339 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 256 | 2031327
42800 | U 339 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 256 | 2082209
29800 | L 123 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 256 | 1507039
29800 | U 123 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 256 | 1557921
29800 | L 123 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 64 | 1395871
29800 | U 123 | C-M-C-M-C-C-C-C-M-D-D 256 | 6-6-2-2-2-2 3 64 | 1446753

Classification

Experimentation was performed initially using a classifier with internals nearly identical to that of Zhang,
Zhao, and LeCun (2016). From here, we varied the input length, character set, and number of nodes within
the fully-connected layers. The activation layers are governed by the ReLU(z) = max{0,z} and batch size
for training was set to 64 samples.

Table 2: Comparative results table of models.

Model Train | Valid Test
1 99.81 | 93.47 | 93.25
2 99.95 | 93.17 | 92.73
3 99.97 | 92.21 | 90.75
4 99.84 | 93.86 | 93.81
5 99.68 | 93.71 | 91.58
6 | 100.00 | 94.53 | 93.09
7 90.85 | 88.72 | 87.62
8 99.91 | 94.19 | 92.95

Results

Of the models including the 339-character input width and nearly-full balanced dataset, the model performing
the best on the validation and testing set was the model using uppercase and lowercase letters with 256-node
fully-connected layers. On the reduced 123-character input set with the reduced balanced dataset, the model
using uppercase and lowercase letters with 256-node fully-connected layers also performed the best on both

the validation and testing sets.

Training Confusion Matrix (acc = 99 84%)

Tue label

1
Predicted label Predicted label

Validation Confusion Matrix (acc = 93 86%)

i

Tue label

Testing Confusion Matrix (acc = 93.81%)

%
i i
1

Predicted label

Figure 5: Confusion matrices for Model 4 (99.84%|93.86%]|93.81%)

Training Confusion Matrix (acc = 100.0%)

Fue label

1 0
Predicted label Predicted label

Validation Confusion Matrix (acc = 94 53%)

Fue label

Testing Confusion Matrix (acc = 93.09%)

Predicted label

Figure 6: Confusion matrices for Model 6 (100%/94.53%|93.09%)

1400

1200

1000

800

600

400

200

Conclusions and Limitations

The models could distinguish the marked differences between the real and fake titles, with consideration
of capitalization potentially conferring a benefit to predictive power while incurring a relaively-small cost
in computational complexity, as the number of parameters added by widening the character table has a
relatively-small impact on parameter count compared to further steps in the model construction process,
lending credence to its scalability and flexibility. Model structure also deserves further investigation; it is
possible that a narrowed, deepended, shortened, model structure may be best, as the effects of altering other
aspects of layer attributes or model structure ought to be explored. Considering that the real and fake data
were derived from specific sources, there remains a major concern that the model may be overfitting based
on detecting certain ‘signatures’ within the text; with a deeper and more diverse dataset, the model can
become better attuned to both the underlying features within the text and attributes of the model.

References

"Ahmed, Hadeer, Issa Traore, editor="Traore Saad Sherif', Isaac Woungang, and Ahmed" Awad. 2018.
“Detecting Opinion Spams and Fake News Using Text Classification.” Security and Privacy 1 (1): €9.
https://doi.org/https://doi.org/10.1002/spy2.9.

Ahmed, Hadeer, Issa Traore, and Sherif Saad. 2017. “Detection of Online Fake News Using n-Gram Analysis
and Machine Learning Techniques.” In Intelligent, Secure, and Dependable Systems in Distributed and
Cloud Environments, edited by Issa Traore, Isaac Woungang, and Ahmed Awad, 127-38. Cham: Springer
International Publishing.

Gutierrez, Pierre, and Jean-Yves Gérardy. 2017. “Causal Inference and Uplift Modelling: A Review of the
Literature.” In Proceedings of the 3rd International Conference on Predictive Applications and APIs,
edited by Claire Hardgrove, Louis Dorard, Keiran Thompson, and Florian Douetteau, 67:1-13. Proceed-
ings of Machine Learning Research. PMLR. https://proceedings.mlr.press/v67/gutierrez17a.html.

Horne, Benjamin D., and Sibel Adali. 2017. “This Just in: Fake News Packs a Lot in Title, Uses Simpler,
Repetitive Content in Text Body, More Similar to Satire Than Real News.” https://arxiv.org/abs/1703.
09398.

Jindal, Nitin, and Bing Liu. 2008. “Opinion Spam and Analysis.” In. https://doi.org/10.1145/1341531.
1341560.

Zhang, Xiang, Junbo Zhao, and Yann LeCun. 2016. “Character-Level Convolutional Networks for Text
Classification.” https://arxiv.org/abs/1509.01626.

https://doi.org/10.1002/spy2.9
https://proceedings.mlr.press/v67/gutierrez17a.html
https://arxiv.org/abs/1703.09398
https://arxiv.org/abs/1703.09398
https://doi.org/10.1145/1341531.1341560
https://doi.org/10.1145/1341531.1341560
https://arxiv.org/abs/1509.01626

Appendix A: Code

Required Packages

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/0 (e.g. pd.read_csv)
import numpy as np
import pandas as pd
from tensorflow.keras
from tensorflow.keras

from tensorflow.keras.

from tensorflow.keras
from tensorflow.keras
import math
import time
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

import re
import os
import os

import pandas as pd
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.python.client import device_lib
Model saving

import bz2

import pickle
import _pickle as cPickle
Saves the "data" with the "title" and adds the .pickle
def full_pickle(title, data):
pikd = open(title + ’.pickle’, ’wb’)
pickle.dump(data, pikd)
pikd.close()

def loosen
pikd =
data

return

(file):
open(file,

.preprocessing.text import Tokenizer
.preprocessing.sequence import pad_sequences
from tensorflow.keras.

layers import Input, Embedding, Activation, Flatten, Dense
layers import ConvlD, MaxPoolinglD, Dropout

.models import Model, load_model
.utils import plot_model

‘rb?)

pickle.load (pikd)
pikd.close()

data

Pickle a file and then compress it into a file with extension
def compressed_pickle(title, data):
with bz2.BZ2File(title + ’.pbz2’, ’w’) as f:
cPickle.dump(data, f)
def decompress_pickle(file):
bz2.BZ2File(file, ’rb’)
cPickle.load(data)

data =
data =
return
device_1lib

data

.list_local_

devices()

Fake News Code

class fakeNews:

def

__init__(self,directory=’/mnt/c/Users/thecu/Documents/R Projects/4270/charLevelCNN/’,lowercase=
self.lowercase = lowercase
self.directory = directory
if lowercase == True:
self.alphabet =
"abcdefghijklmnopqrstuvwxyz0123456789, ;. !7: 2 \"/\\| _@#$% "&*~ ‘+-=<>() [J{}"
else:
self.alphabet =
" ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz0123456789, ;. 17: 2 \"/\\ | _Q#8$% &*~ +-=<>

def make_fakeNews(self, balance=True, content = False, pad = 1.25):

self.pad = pad
self.balance = balance
self.content = content
self.pad = pad
articles []
for dirname, _, filenames in os.walk(self.directory+’data’):
for filename in filenames:
mypath = os.path.join(dirname, filename)
name = re.sub(’\.csv’,’’,filename + ’_all’)

exec("%s = pd.read_csv(" % (name,)+
"> {path}".format (path=mypath)+"’)")

if name == ’Fake_all’:
booler =1

else:
booler = 0

exec("%s.insert (%s.shape[1],’y’, [%d]l*%s.shape[0])" % (name,name,booler,name))
exec("articles.append(%s)" % (name,))

if self.balance == True:

clsLen = []
for df in articles:
clsLen.append(df.shape[0])
classSize = int(np.min(100*np.floor (np.array(clsLen)/100)))
articles_balanced = []
for df in articles:
articles_balanced.append(df.iloc[:classSize,:])
Articles_bal = pd.concat(articles_balanced,axis=0,ignore_index=True)
Articles_all = Articles_bal

else:

Articles_ubl = pd.concat(articles,axis=0,ignore_index=True)
Articles_all Articles_ubl

tk = Tokenizer (num_words=None, char_level=True, oov_token=’UNK’)
train_titles = Articles_all.iloc[:,0]

train_bodies = Articles_all.iloc[:,1]

all_y = Articles_all[’y’].values

tk.fit_on_texts(train_titles)

char _dict = {}

for i, char in enumerate(self.alphabet):

char_dict[char] = i + 1

Use char_dict to replace the tk.word_index

tk.word_index = char_dict.copy()
Add °UNK’ to the vocabulary
tk.word_index[tk.oov_token] = max(char_dict.values()) + 1
Convert string to index
title_sequences = tk.texts_to_sequences(train_titles)
max_ttl = int(math.ceil(self.pad*max([len(x) for x in Articles_all.iloc[:,0].values])))
if self.content == True:
content_sequences = tk.texts_to_sequences(train_bodies)

max_cnt = int(math.ceil(self.pad*max([len(x) for x in Articles_all.iloc[:,1].values])))

coded_titles = pad_sequences(title_sequences, maxlen=max_ttl,
padding=’post’)
coded_bodies = pad_sequences(content_sequences, maxlen=max_cnt,
padding=’post’)
return (np.concatenate([coded_titles,coded_bodies],axis=1).astype(’int32’),
all_y,tk.word_index)

else:

return (pad_sequences(title_sequences, maxlen=max_ttl, padding=’post’).astype(’int32’), all_y,t!

def three_way_split(self,make_Fake, split=’default’):
self.X = make_Fake[0]
self.y = make_Fake[1]
tot_len = self.y.shape[O0]
self.split = split
if self.split == ’default’:
tts = (7,2,1)
else:
tts = self.split

tsp = int((tts[2]*tot_len/20))
vsp = int(((tts[1]+tts[2])*tot_len/20))
hlf = int((1*tot_len/2))

test_tp = (np.concatenate([self.X[:tsp,:],self.X[hlf: (hlf+tsp),:]1],axis=0),
np.concatenate([self.y[:tsp]l,self.y[hlf: (hlf+tsp)]],axis=0))
valid_tp = (np.concatenate([self.X[tsp:vsp,:],self.X[(hlf+tsp): (hlf+vsp),:]1],axis=0),
np.concatenate([self.y[tsp:vspl, self.y[(hlf+tsp): (hlf+vsp)]],axis=0))
train_tp = (up.concatenate([self.X[vsp:hlf,:],self.X[(hlf+vsp):,:]1],axis=0),
np.concatenate([self.y[vsp:hlf],self.y[(hlf+vsp):]1],axis=0))
app = []
for tp in [train_tp, valid_tp,test_tp]:

alength = np.arange(tp[1].shape[0])

np.random.seed(5318008)

np.random. shuffle(alength)

wee = []

for q in tp:

if len(q.shape) == 2:
wee.append(q[alength,:])
elif len(q.shape) ==
wee.append (q[alength])

app - append (wee)

return app
def makeClassifier(self,make_Fake, fully_connected_layers = None, conv_layers = None, dropout

self.fully_connected_layers = fully_connected_layers
self .dropout_p = dropout
self.optimizer = optimizer
self.loss = loss
self.X = make_Fake[0]

= 0.5, op

self.y = make_Fake[1]

self.wind = make_Fake[2]

self.fully_connected_layers = fully_connected_layers
self.conv_layers = conv_layers

input_size = self.X.shape[1]

vocab_size = len(self.alphabet) + 1

embedding_size = len(self.alphabet) + 1

if self.fully_connected_layers == None:
fully_connected_layers=[1024, 1024]
if self.conv_layers == None:
conv_layers = [[2566, 7, 3],
[2566, 7, 31,
[256, 3, -1],
[256, 3, -1],
[256, 3, -1],
[2566, 3, 3]]

Embedding weights
embedding_weights = [] # (len(alphabet)+2, len(alphabet)+1)
embedding_weights.append(np.zeros(vocab_size)) # (0, len(alphabet)+2)

for char, i in self.wind.items(): # from index 1 to len(alphabet)+2
onehot = np.zeros(vocab_size)
onehot[i - 1] =1
embedding_weights.append (onehot)

embedding_weights = np.array(embedding weights)
print (’Load’)

Embedding layer Initialization

embedding_layer = Embedding(vocab_size + 1,
embedding_size,
input_length=input_size,
weights=[embedding_weights])

Model Construction
Input
inputs = Input(shape=(input_size,), name=’input’, dtype=’int64’)
Embedding
x = embedding_layer (inputs)
Conv
for filter_num, filter_size, pooling_size in conv_layers:
x = ConviD(filter_num, filter_size) (x)
x = Activation(’relu’) (x)
if pooling_size != -1:

shape=(7, padded input s

x = MaxPoolinglD(pool_size=pooling_size) (x) # Final shape=(None, 34, 256)

x = Flatten() (x) # (None, 8704)

Fully connected layers

for dense_size in fully_connected_layers:
x = Dense(dense_size, activation=’relu’)(x) # dense_size == 1024
x = Dropout (self.dropout_p) (x)

Output Layer

predictions = Dense(l, activation=’sigmoid’) (x)

Build model

model = Model(inputs=inputs, outputs=predictions)

model.compile(optimizer=optimizer, loss=loss,

metrics=[’accuracy’]) # Adam, categorical_crossentropy

model . summary ()

return model

#plot_model (model, to_file=self.directory + ’model_plot.png’, show_shapes=True, show_layer_names=Tr

Histograms

scrimblo

fakeNews (lowercase=True)

edastart = scrimblo.make_fakeNews (eda=True)
bseq = np.sqrt(np.arange(626))

for

plt.
plt
plt.
plt.
for

plt.
plt.
plt.

q in range(len(edastart)):
if edastart[ql[’y’].values[0]==1:

1bl = ’Fake’

col = *#007£f7£7£°
else:

1bl = ’real’

col = *#7£f007£f7f°

plt.hist(np.ravel (edastart[q]l [’title’].apply(lambda x: len(x)).values),bins=15*bseq,color=col, labe
legend ()

.title(°Histogram of Lengths of Real vs. Fake Title Length’)

savefig(’/mnt/c/Users/thecu/Documents/R Projects/4270/charLevelCNN/eda/’ + ’titles_hist.png’)
clf O

q in range(len(edastart)):

if edastart[ql[’y’].values[0]==1:

1bl = ’Fake’

col = "#007£f7£f7f°
else:

1bl = ’real’

col = *#7£007£f7f°

plt.hist(np.ravel (edastart[ql [’text’].apply(lambda x: len(x)).values),bins=2500*(25-bseq) [::-1],col
legend ()

title(’Histogram of Lengths of Real vs. Fake Article Body Length’)

savefig(

’/mnt/c/Users/thecu/Documents/R Projects/4270/charLevelCNN/eda/’ + ’bodies_hist.png’)

Models

Model 4

zabloing_uf

scrimblo_u = fakeNews(lowercase=False)
scrimblo_u.make_fakeNews(content=False,raw=False)

scrungus_ud = scrimblo_u.makeClassifier(zabloing_uf,fully_connected_layers=[256,256])
kablooey_uf = scrimblo_u.three_way_split(zabloing_uf)
myModel3 = scrimblo_u.get_fit(scrungus_ud,kablooey_uf, name=’model_3’,

batch_size = 64,
epochs = 40,
verbose = 2,
display = True,
predict = True)

Model 6

scrimblo_u = fakeNews(lowercase=False)
zabloing_uf = scrimblo_u.make_fakeNews(content=False,raw=False,min_title_len=30,max_title_len=96,x_wid=
scrungus_ud = scrimblo_u.makeClassifier(zabloing_uf,fully_connected_layers=[256,256])
kablooey_uf = scrimblo_u.three_way_split(zabloing_uf)
myModel5 = scrimblo_u.get_fit(scrungus_ud,kablooey_uf, name=’model_5’,
batch_size = 64,
epochs = 40,
verbose = 2,
display = True,
predict = True)

	Introduction
	Exploratory Data Analysis

	Literature Review
	Methodology
	Computer Information
	Software
	Preprocessing
	Classification

	Results
	Conclusions and Limitations
	References
	Appendix A: Code
	Required Packages
	Fake News Code
	Histograms
	Models
	Model 4
	Model 6

